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Rumiantsev in [1 ] investigates the influence of viscous friction on the
stability of vertical rotation of a gyroscope on gimbals. In [2,3 ] the
respective authors investigate the vertical rotation of a gyroscope
taking into account dry friction in the suspension, The latter problem is
further investigated in this paper.

Consider a gyroscope on gimbals as in Fig., 1.

Let xye ¥y» zy be the fixed coordinate
system and xyz be the moving coordinate
system attached to the casing (inner ring).
Let the x-axis be along the axis of the
casing, the :z-axis along the spin axis. Let
Y be the rotation angle of the outer ring,

6 the rotation angle of the casing in the
outer ring, ¢ the spin angle of the rotor;
let L denote the center of gravity of the
casing together with the rotor, P their
weight, A, B and C the moments of inertia of
the gyroscope about the moving axes x, y and
z, respectively. Al, B1 and C1 the moments
of inertia of the casing about the same
moving axes x, y and z, respectively, J the moment of inertia of the
outer ring about the z;-axis, Let the z;-axis coinciding with the axis

of the outer ring be vertical, and let the distance OL equal <.

Along the x-axis acts the moment of dry friction ”1 = - B1 sign 0,
where B; > 0, and along the z-axis acts the moment My = — B, sign Y,
where B2 > 0.

843



844 V.V. Krementulo

Since the variables J, 0 and ¢ are independent holonomic variables,
we can write the equations of motion of the system in the form of
Lagrange equations of the second kind

(A+A)06"—(A-+B;—Cy)Y'2sinBcos B + C (¢ -+ ¢ cos 0) $°sin 0 — P{ sin 6 =M,
d;‘t [T + (A + By) {"sin? 0 -+ Cyd cos2 0 + C (¢ -+ ¢" cos 0) cos 8] = M, ()
2@ + ¢ 00s0) =0

The last equation, corresponding to the cyclic coordinate ¢, yields
the first integral

¢+ ¢ cosb=r,

Let us introduce a unit sphere whose center coincides with the fixed
point O and investigate trajectories of the point of intersection of the
axis of the rotor with the surface of the sphere.

According to Painleve [4 ], the value of M, when 6 = 0 lies in the
interval [—-Bl, +BI] , and the value of M2 when iy = 0 lies in the interval
[- 5, +By 1. Further

— B for fl (kl), 9) <—5B
Milg_y = { B, for [,(§,0)>B, (2)
h,0) for |fH1(¢,0)[< By
— B, for f,(0, 8) <— B,
Mylyy= { B, for 7,(6',0)> B, (3)
f2(0,,8) for |f,(6,0)| << B,

i, 8)=—(A+ B, —Cy) ¢ 2sinBcos® 4 Cry ¢ sind — PLsin @

where

f2(8, 8) = —Cr,0°sin @ (4)

Each of the first two inequalities (2) corresponds, according to (1),
to the presence on the trajectory of one point 6 = 0 for which ('9.;4 0. The
third inequality (2) gives § = 0, which corresponds to the part of the
trajectory lying on a parallel of latitude. From the system (1) follows
that the first two inequalities (3) imply that t,b;é 0 and the third in-
equality (3) leads to 12}=4o, which corresponds to the part of the tra-
jectory lying on a meridian.

Let us take the segment of the trajectory which lies on the parallel
of latitude

0=20,, 6-o0, lill #0 ()., 6, are at the initial point of the segment)

which is represented by the equations
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(J + (A+ By)sin?6; + C1c08201) §" =+ Boy [ /1 (§", 81) | < By )

The last inequality gives §/°< zﬁ< $°°, where (/;°, v,[;°° are roots of
equation |f1(¢n 01)| = B, (See Fig. 2). The angular velocity is a linear
function of the time ¢

. B,t .
¥ ) ¥ rra T Eres e, >0
N Byt o
4)1 + J -+ (A + Bl) sin? 0 -+ 01 00529] pu 4)1 <0

Let us assume for the sake of simplicity that the initial instant of
time t = 0 occurs at the initial point of the segment (¢1. 01), that is
Y= ¢i' at ¢t = 0. It can be easily shown that the trajectory could lie
on a parallel of latitude only in a final interval of time [0, T,] where

. J + (A + Bl) sin291 + Cy 005291

T : I£w.61
1 B, [ ] \ 4 ! /
]
When t = T, the gyroscope falls into a ?\ E |
"stationary zone*, Beginning from this instant ! \\\//4_\\ '
. H i 4
of time, the axis of the rotor occupies a cer- vlo <k v

tain fixed position in space (¥ = constant, @ =

constant). It means that in such a case the FIG. 2.

regular precession, which is possible when the

forces are conservative, is absent. Thus, when

dry friction is taken into account, the class of characteristic motions
becomes smaller. We shall now investigate the trajectory segment along
the meridian

Y= Y=0, =0, 6, 40

(;, 0, are at the initial point of the segment)
which is represented by the equation
(A+ A,)8" — PLsind =+ By, [ f2(6° )| < By (6)
Let us designate

__IL_—a B, =b
AT A" Af a4, 7

We shall demonstrate now that after a finite interval of time Té the
gyroscope will fall into a "stationary zone", meaning that the velocity
0 vanishes when ¢ = T,. Let 01 > 0. We shall replace in (6)

v=10, =2,
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We obtain then
% (7% — £1%) = a (cos 8; — cos 8) - by (8, — 9), f1=1(0;) =6y
Let 6 be a root of the equation
61°% 4~ 2a (c0s 0, — c0s 0) - 2b; (8; — 6) =0
Then the desired value of T, could be expressed in the form

or

Ty= S . 40 ) K =0,"% 4 2a cos 6; -+ 25,0,
P VK —2acos0— 25,6
1

We shall investigate now the vertical rotation
6=0, 6" =0, " =0, rg= (7
The system (1) shows that such a rotation is possible, and on the
strength of (2), (3) and (4)
M;=0 npu 0' =0, 6=0, M,=0 opu ¢ =0, 0=0

We shall study the stability of this motion. For this purpose we shall
investigate as usual the perturbed motion

0:7]17 9‘251:711.1 ({J.:Ez, r0=(-l)+£3

On the strength of the above considerations, we shall study separately
the behavior of the perturbed trajectories lying on the three segments

1. &0, E=£0, (2. E1=0, E=£0, 3. &0, =0

For each segment, we could construct a sign-definite function in the
form of a linear combination of integrals, obtained from the correspond-
ing equations of the perturbed motion,

1. On the first segment we have a relation similar to the law of con-
servation of energy when the forces are conservative

JP? (A 4 A1) 0%+ (A - By) &P sin?9 - C107% cos?0 - 2PE cos 6 -
4 Crg2— 2M10 — 2Mob = Iy

The equation of the perturbed motion yields two integrals

Wi=1E&s, Wy= (A4 A))E2 4 (J + C1) &2+ C (&2 + 208s) — PUm? — 2Myn — 2Msd (8)

The angle denoted previously by i is marked here by the letter 5, in
order to indicate that we do not investigate stability with respect to ¢
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We shall introduce the function
Oy =2 (Mml -+ Mﬂ’)
and construct the combination
Vi=Oy 4 Wy— 2CoW,
When { < 0 the function V1 is a positive-definite quadratic form. The

time derivative of ¥, equals, on the strength of the equations for the
perturbed motion

dVy  d®y

7 t 2 (MEy -+ Mog)

and since
Mg = — ByE;signg; <0, Moty = — Byfasign £, <0

it is negative.

2. The equations of the perturbed motion for the second segment are
given by (5), that is

(J 4 (4 + By)sin? 8y 4 Cy cos?® 8y) %ETZ =+ By, [f1 (62 O1) | << By 9

In view of the fact that the friction M, on the considered segment
0= 01 does not do any work, the equations of the perturbed motion admit
the integral

Wg’ = (J -+ (A -+ Bl) sin261 -+ Cl C()Szel) 522 -+ C (832 < 2(053) — 2ngJ

The integral ¥, = 53 remains unchanged. We shall construct the combi-
nation
Vz == (1)2 + ng —_ 200)1’171, q)z = 2M24)

The time derivative of Vé is, on the strength of (9)

dv,  dm,
@ T A T M <0

3. The equations of the perturbed motion on the third segment are

d
At+apB _py—tm, Mo pGw)I<B U0

and admit the integral
Wy = (A 4+ Ay) §;2 + C (Es% + 20ks) — PLn® — 2Mimy

Under the condition { < 0 the combination

Va = CDg + Wg” — ZC(L)VVI, @3 = r)Ml'Y)I
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is a positive-definite function, whose time derivative is, on the
strength of (10), negative
dVs  dDg-
o =@ ME <O
In this way, to every segment of the perturbed trajectory there cor-
responds a function which becomes positive-definite when the following
condition is satisfied:

£<0 (1)

The time derivative of every function is negative on the strength of
the corresponding system of equations for the perturbed motion. The in-
vestigated motion (7) is stable under the above conditions, and we have
asymptotic stability with respect to fl, and fz' This requires additional
explanation.

We must show that for any chosen number ¢ > 0 we can find such a
number § > 0, that if the initial perturbations are inside the sphere &

m 67+ 6 4 BT

then the motior of the perturbed trajectory
will always be inside the sphere €.

M 6 4 Gt 4 B¢

From the above considerations follows that
the perturbed trajectories caused by small
initial perturbations can be of two types
(Fig. 3). The trajectories are projected on
the plane tangent at the North pole to the
unit sphere with its center at 0., The initial
points are Eg and Eg. The velocity &,
vanishes at the point E{. £, vanishes at E; and the gyroscope falls into
the "stationary zonel.

The trajectory segment EI»E;vcoincides with a parallel of latitude.
At the point EY"-£, vanishes at the point Ey £, vanishes and the gyro-
scope falls again into the "stationary zone". The trajectory segment Ef
E;~coincides with a meridian,

For a given ¢ > 0 we could construct 31 > 0, 52 > 0 corresponding to
the two types of trajectories. Then, the desired value of § is
% = min (51, 52)

Using the functions Vl, V2, V3, we make an estimate of & and obtain

3= min{ KoKy g KoKy" el[

KK+ = KK
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where

K; =max (44 4, J 4+ Cy, C, — PO), Ky =min(4+ 4, J 4+ Cy, C, — PY)

Ky =max (J 4 C,, C) Ky = min (J 4-'C,, C) ,

Ky =max (A+ 4, C, — PY), Ky =min(A-+ A, C, — PY), » = I_(z_(&K_t_Kz)
2

It means that the investigated motion is stable.

The result which we obtained could be generalized. Let us consider the
motion

0:90 9':0, qf:o, o = (12)

which represents constant rotation about an axis at an angle € = 00 to
the vertical. With friction absent (ll1 = 0, H2 = 0) such a motion is
impossible according to (1). The conditions (2) and (4) show that under
the condition

| PLsin@y | < By (13)

such a motion is possible. Therefore, the inequality (13) represents the
condition for the existence of the motion (12).

Investigation of stability of this motion could be carried through
similarly. The sufficient condition for stability could be reduced to the
inequality (11).
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