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Rumiantsev in [l 1 investigates the influence of viscous friction on the 
stability of vertical rotation of a gyroscope on gimbals. In [ 2.3 ] the 
respective authors investigate the vertical rotation of a gyroscope 

taking into account dry friction in the suspension. The latter problem is 
further investigated in this paper. 

Consider a gyroscope on gimbals as in Fig. 1. 

Let x1* yl# z1 be the fixed coordinate 
system and xyz be the moving coordinate 
system attached to the casing (inner ring). 

Let the x-axis be along the axis of the 
casing, the x-axis along the spin axis. Let 
$ be the rotation angle of the outer ring, 
8 the rotation angle of the casing in the 
outer ring, 4 the spin angle of the rotor; 
let L denote the center of gravity of the 
casing together with the rotor, P their 
weight, A, B and C the moments of inertia of 

F’IG. 1. the gyroscope about the moving axes X, y and 

z, respectively. AI, B1 and CI the moments 
of inertia of the casing about the same 

moving axes x. y and Z, respectively, J the moment of inertia of the 
outer ring about the zl-axis. Let the zI-axis coinciding with the axis 
of the outer ring be vertical, and let the distance OL equal 5. 

Along the x-axis acts the moment of dry friction MI = - B, sign 0, 

where B1 > 0, and along the z-axis acts the moment Mg = - Bq sign 1c/, 
where Bs > 0. 
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Since the variables $, 8 and 4 are independent holonomic variables, 
we can write the equations of motion of the system in the form of 
Lagrange equations of the second kind 

(A + A,) 8” - (A + Br - C,) +‘a sin 0 cos 0 + C ((p’ + + cos 0) 9’ sin 0 - PC sin 0 =Mr 

-& IJ9’ + (A + &I 9 ‘sin2 0 + Cl+’ co9 0 + C (cp’ + +’ cos 0) co9 01 = Mz (4) 

$p*+ $‘cos0) =o 

The last equation, corresponding to the cyclic coordinate 4, yields 
the first integral 

Let us introduce a unit sphere whose center coincides with the fixed 
point 0 and investigate trajectories of the point of intersection of the 
axis of the rotor with the surface of the sphere. 

According to Painleve’ [ 4 1, 
interval [-III, 

the value of M, when e’ = 0 lies in the 

+I$], and the value of M, when @ = 0 lies in the interval 

[-Bg, +B2 I. Further 

where 

- Bl for fl ((J’, 0) < - B1 
Ml le.=0 = B1 for II (T, 0) > B1 

fl(+‘, 0) for I flW9 0) I d BI 

i 

--2 for f2 (Q’, 0) < - B2 
M2 I+,,= B2 for f2(Q', 0) > B2 

f2 (0-, 0) for 1.f~ (0*, 0) I < B2 

fI (+‘, 0) = - (A + B1 - Cl) qz sin 0 cos 0 + Cr, $J’ sin 0 - Pi; sin 0 

(2) 

(3) 

f2 (0’, 0) = - Cr,B’ sin 0 (4) 

Each of the first two inequalities (2) corresponds, according to (1). 
to the presence on the trajectory of one point fi = 0 for which 4-f 0. The 
third inequality (2) gives 6’= 0, which corresponds to the part of the 

trajectory lying on a parallel of latitude. From the system (1) follows 
that the first two inequalities (3) imply that 4 f 0 and the third in- 
equality (3) leads to $ =“O, which corresponds to the part of the tra- 

jectory lying on a meridian. 

Let us take the segment of the trajectory which lies on the parallel 
of latitude 

8=8,, e’=o, I& f 0 ($l. 8, are at the initial point of the segment) 

which is represented by the equations 
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(J + (A + B,) sin2 81+ Cl co9 01) $” = f BzI Ifl(9’P Wl<Bl 

The last inequality gives Go< 6 < doe, where i”, ice are rOOtS of 

equation 1 fl($, 8,) ( = B1 (See Fig. 2). The angular velocity is a linear 

function of the time t 

$1' - B,t 
J f (A + B1) sin2 0, + Cl co@ 81 npu 91’ > 0 

4J’ (t) = 

I $1' f 
B2t 

J + (A + Bl) sin2 GE + C1 co&J1 npn $1’ -=z 0 

Let us assume for the sake of simplicity that the initial instant of 
t,ime _t = 0 occurs at the initial point of the segment ($1, 8,). that is 

$= $10 at t=O. It can be easily shown that the trajectory could lie 
on a parallel of latitude only in a final interval of time [O, T1l where 

T 
1 

= .7 + (A + B,) sin201 + CI cos2& 
B2 

Ih'l lIiu1.6111, 

When t = T, the gyroscope falls into a 

m 

1 1 

n stationary zone*, Beginning from this instant I 
I I 

Y 
of time, the axis of the rotor occupies a cer- VU .-r w 
tain fixed position in space ($ = constant, 8 = 

constant). It means that in such a case the FIG. 2. 

regular precession, which is possible when the 

forces are conservative, is absent. Thus, when 

dry friction is taken into account, the class of characteristic motions 

becomes smaller. We shall now investigate the trajectory segment along 

the meridian 

$I= l&. 6 = 0, It’= 0, i, f 0 

O/q 0, are at the initial point of the segment) 

which is represented by the equation 

(6) 

Let us designate 

PC 
GxAlua, 

BI -= 
‘4 + ‘4 

bl 

We shall demonstrate now that after a finite interval of time T2 the 
gyroscope will fall into a “stationary zone”, meaning that the velocity 

8 vanishes when t = Tz. Let 8, > 0. We shall replace in (6) 

Q’ = f(O), fyk$f 
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We obtain then 

f (12 - f12) = a (cos 81 - cos 3) + bl(0, - Q), fl = f (0,) = 01' 

Let 6; be a root of the equation 

%+2 + 2a (cos Or- cos 0) + 2bl (0, - 0) = 0 

Then the desired value of T2 could be expressed in the form 

OT 

T2 = 
e, 1/X-2Za:sL2b,B ’ s 

K = 81’2 -/- 2a cos 81+ 2blQl 

We shall investigate now the vertical rotation 

0 = 0, 8’ = 0, +’ = 0, r. = w (7) 

The system (1) shows that such a rotation is possible, and on the 
strength of (2), (3) and (4) 

MI = 0 npli o-=0, 0 =o, M2=0 npn (li’ = 0, o=o 

We shall study the stability of this motion. For this purpose we shall 

investigate as usual the perturbed mot ion 

Q = “/Il. 0’ = 51 = yil’, $’ = Ez, r. = 0 + i3 

On the strength of the above considerations, we shall study separately 

the behavior of the perturbed trajectories lying on the three segments 

1. &#O, Ez+o, I2. &=O, Ez#O, 3. &#O, &==O 

For each segment, we could construct a sign-definite function in the 

form of a linear combination of integrals, obtained from the correspond- 
ing equations of the perturbed motion. 

1. On the first segment we have a relation similar to the law of con- 

servation of energy when the forces are conservative 

J~JJ’~ j- (A + A,) 0” + (A + B,) +‘” sin28 + C&J’% cos20 + 2P5 cos 0 + 

f Cr,2 - 2M10 - 2M,?, = hl 

The equation of the perturbed motion yields two integrals 

The angle denoted previously by $ is marked here by the letter qg in 
order to indicate that we do not investigate stability with respect to I& 
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We shall introduce the function 

a= 2 ph+ M&I 

and construct the combination 

When < < 0 the function Vl is a positive-definite quadratic form. The 
time derivative of V, equals, on the strength of the equations for the 
perturbed motion 

and since 

MISI = - BIEI sign El < 0, M2Ez = - B2E2 sign 52 < 0 

it is 

2. 
given 

In 

negative. 

The equations of the perturbed motion for the second 
by (51, that is 

(J + (A + B1) sin2 & + C1 cos2 9,) ‘$ = rt B2, I flK21 Ql) 

segment are 

I<& (9) 

view of the fact that the friction 111 on the considered segment 
8 = 8, does not do any work. the equations of the perturbed motion admit 
the integral 

W2’ = (J + (A + BI) sin201 + C1 cos291) Et2 + C (Es2 $ 2059) - 2M& 

The integral I1 = 5, remains unchanged. We shall construct the combi- 
nation 

v2 = 02 + W2’ - 2CoW1, 02 = 2M4J 

The time derivative of V9 is, on the strength of (9) 

dV, dcD2 -z=2-_ 
dt dt 

2M252 < 0 

3. The equations of the perturbed motion on 

(A + A ) ‘A - PC-4 ’ dt 1 = f B 1, 
dr;, = & 

dt 

and admit the integral 

the third segment are 

(IO) 

IF’,” = (A + A,) 512 + C (~3~ + 2wEs) ~- PDi12 - 2Mlr;, 

Under the condition 5 < 0 the combination 

v3 = 0s + W2” - 2CoW1, a)3 = 2Mlr;l 
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is a positive-definite function, whose time derivative is, on the 
strength of (lo), negative 

dVa d03. -=-_= 
dt dt 

2MIEl< 0 

In this way, to every segment of the perturbed trajectory there cor- 
responds a function which becomes positive-definite when the following 

condition is satisfied: 

C<O (11) 

The time derivative of every function is negative on the strength of 
the corresponding system of equations for the perturbed motion. The in- 
vestigated motion (7) is stable under the above conditions, and we have 

asymptotic stability with respect to cl, and 5,. This requires additional 
explanation. 

We must show that for any chosen number 6 > 0 we can find such a 

number 6 > 0, that if the initial perturbations are inside the sphere 6 

then the motion of the perturbed trajectory 
will always be inside the sphere E. 

From the above considerations follows that 

the perturbed trajectories caused by small 
initial perturbations can be of two types 
(Fig. 3). The trajectories are projected on 
the plane tangent at the North pole to the 
unit sphere with its center at 0. The initial 
points are Ei. and E;. The velocity [I 

FIG. 3. 

vanishes at the point E;’ ,f2 vanishes at E;- and the gyroscope falls into 

the nstationary zonel. 

The trajectory segment E;. E;. coincides with a parallel of latitude. 

At the point Ey.t2 vanishes at the point E~.c$, vanishes and the gyro- 

scope falls again into the “stationary zone”. The trajectory segment E;’ 

E;.coincides with a meridian. 

For a given c > 0 we could construct 6, > 0, 6, > 0 corresponding to 
the two types of trajectories. Then, the desired value of 6 is 

6 = min (S1, FZ) 

Using the functions Y,, Vg, V3, we make an estimate of 6 and obtain 

6 = min KS& 
K1 (K,’ + x) ” 

K2K2” 
K1K1” ‘. 1 
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where 

Kl =max(A+Al, JS Cl, C, -R), Kz = min (A + Al, J + C1, C, - PI) 

K1’ = max (J + C1, C) K,’ = min (J +‘C,, C) 

Kz’ = max (A + A1, C, - PC), KS” = min (A+ AI, C, -PC), x = Kz’(Ki- K2) 
2 

It means that the investigated motion is stable. 

The result which we obtained could be generalized. Let us consider the 
mot ion 

0 ;=; 0, 8’=0, q-=0, r. = 0 

which represents constant rotation about an axis at an angle 8 = 6, to 
the vertical. With friction absent (II, 3 0, 112 = 0) such a motion is 
impossible according to (1). The conditions (2) and (4) show that under 
the condition 

/ PC sin 0, / < B1 (13) 

such a motion is possible. Therefore, the inequality (13) represents the 

condition for the existence of the motion (12). 

Investigation of stability of this motion could be carried through 
similarly. The sufficient .condition for stability could be reduced to the 
inequality (11). 
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